閉める
閉める
明日に向けたネットワーク
明日に向けたネットワーク
サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。
          Netskopeを体験しませんか?
          Netskopeプラットフォームを実際に体験する
          Netskope Oneのシングルクラウドプラットフォームを直接体験するチャンスです。自分のペースで進められるハンズオンラボにサインアップしたり、毎月のライブ製品デモに参加したり、Netskope Private Accessの無料試乗に参加したり、インストラクター主導のライブワークショップに参加したりできます。
            SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。
            SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。
            Netskope、2024年ガートナー、シングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご確認ください。
              ダミーのためのジェネレーティブAIの保護
              ダミーのためのジェネレーティブAIの保護
              ジェネレーティブ AI の革新的な可能性と堅牢なデータ セキュリティ プラクティスのバランスを取る方法をご覧ください。
                ダミーのための最新のデータ損失防止(DLP)eBook
                最新の情報漏えい対策(DLP)for Dummies
                クラウド配信型 DLP に移行するためのヒントとコツをご紹介します。
                  SASEダミーのための最新のSD-WAN ブック
                  SASEダミーのための最新のSD-WAN
                  遊ぶのをやめる ネットワークアーキテクチャに追いつく
                    リスクがどこにあるかを理解する
                    Advanced Analytics は、セキュリティ運用チームがデータ主導のインサイトを適用してより優れたポリシーを実装する方法を変革します。 Advanced Analyticsを使用すると、傾向を特定し、懸念事項に的を絞って、データを使用してアクションを実行できます。
                        レガシーVPNを完全に置き換えるための6つの最も説得力のあるユースケース
                        レガシーVPNを完全に置き換えるための6つの最も説得力のあるユースケース
                        Netskope One Private Accessは、VPNを永久に廃止できる唯一のソリューションです。
                          Colgate-Palmoliveは、スマートで適応性のあるデータ保護により「知的財産」を保護します
                          Colgate-Palmoliveは、スマートで適応性のあるデータ保護により「知的財産」を保護します
                            Netskope GovCloud
                            NetskopeがFedRAMPの高認証を達成
                            政府機関の変革を加速するには、Netskope GovCloud を選択してください。
                              一緒に素晴らしいことをしましょう
                              Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。
                                Netskopeソリューション
                                Netskope Cloud Exchange
                                Netskope Cloud Exchange(CE)は、セキュリティ体制全体で投資を活用するための強力な統合ツールをお客様に提供します。
                                  Netskopeテクニカルサポート
                                  Netskopeテクニカルサポート
                                  クラウドセキュリティ、ネットワーキング、仮想化、コンテンツ配信、ソフトウェア開発など、多様なバックグラウンドを持つ全世界にいる有資格のサポートエンジニアが、タイムリーで質の高い技術支援を行っています。
                                    Netskopeの動画
                                    Netskopeトレーニング
                                    Netskopeのトレーニングは、クラウドセキュリティのエキスパートになるためのステップアップに活用できます。Netskopeは、お客様のデジタルトランスフォーメーションの取り組みにおける安全確保、そしてクラウド、Web、プライベートアプリケーションを最大限に活用するためのお手伝いをいたします。

                                      Enhancing Security with AI/ML

                                      Aug 25 2022

                                      Digital transformation has driven the rapid adoption of cloud-delivered services like SaaS/IaaS/PaaS in enterprises. This, in turn, has resulted in the migration of digital assets (aka data) from the confines of enterprise data centers to the cloud data centers that are not under the control of the enterprises. Additionally, the onset of the COVID-19 pandemic has resulted in remote work becoming the norm. These trends have, in turn, forced a security transformation from the traditional stack of security appliances deployed in an enterprise data center to cloud-delivered security. Gartner has coined the term security service edge (SSE) to represent this new platform where security services like secure web gateway, cloud access security broker, zero trust network access, egress firewall, etc. are delivered in the cloud to safely enable users to perform their work and to reduce the risk of getting compromised and losing data.

                                      There are a few key capabilities that are critical to SSE solutions:

                                      • Zero Trust Data Access – SSE solutions enforce security policies for accessing data based on contextual information like user, device, application, application risk, user activity, user risk, etc. This contextual information becomes the virtual badge that allows/denies/coaches a user’s access to an enterprise’s digital assets
                                      • Insider Threat Detection – Enterprise users (employees, contractors) are entrusted with access to business-sensitive data to carry out their work. Security controls are needed to ensure these insiders do not inadvertently or maliciously exfiltrate the sensitive data thereby putting the business at risk.
                                      • External Threat Detection – Every enterprise is under attack from external bad actors looking to compromise the coveted data for monetary or strategic control purposes. These actors can be individual hackers and organized cybercrime groups, as well as nation-states. The attacks can be phishing, malware, ransomware, or even sophisticated APT attacks. SSE solutions provide effective threat detection, prevention, and remediation services as an added layer of defense to enterprises to protect their data.

                                      The role of AI/ML in SSE solutions

                                      The key underpinning of a powerful SSE solution is the ability to extract very rich contextual information when processing network traffic and enforce the zero trust data access policies. Some of the inputs needed for making the data access decision are the sensitivity of the data leaving an enterprise as well as indicators of threat in data coming from external sources. These are areas where artificial intelligence (AI) and machine learning (ML) have proven to be invaluable in enhancing the fidelity of detections. Let’s look at this in more detail:

                                      Sensitive data classification

                                      Legacy data security solutions use a combination of regular expressions, keywords, and dictionaries to identify sensitive data. This is very error-prone and leads to excessive false positives and in turn, adds a burden to security analysts to sift through mounds of alerts to identify the real violations.

                                      Machine learning-driven data classification can significantly reduce this burden and provide high fidelity classification verdicts. Natural language processing (NLP) algorithms are very conducive to solving this problem. NLP models have been developed by Netskope to classify common business documents like tax forms, paychecks, business contracts, non-disclosure agreements, etc. By using these pre-built models, security admins do not have to create cumbersome and error-prone regular expressions and other patterns to identify which of these types of documents contain sensitive information that needs to be protected from compromise.

                                      In the Netskope Security Cloud, 20% of documents being scanned are images, like JPG and PNG files. Additionally, many business documents have embedded images. The most common way of classifying images is to run them through an optical character recognition (OCR) engine. It is well known that the efficacy of OCR engines is marginal for the commonly seen image content. This is another area where AI/ML can be leveraged to yield outstanding results. There are a number of deep learning algorithms that are suitable for classifying image data. Examples of image detection AI/ML models deployed in the Netskope Security Cloud include passports, drivers’ licenses, other photo identification, computer screenshots, whiteboard images, etc. Given the rise of privacy regulations around the world like CCPA, GDPR, LGPD, etc., it becomes very important for enterprises in possession of images that contain PII data to protect it from being compromised by insiders and external actors.

                                      Threat detection

                                      Insider threat continues to be one of the biggest issues facing enterprises these days. Departing employees tend to take the sensitive information like design documents and code that they contributed to while working in the company. Malicious insiders also steal company data and share it externally. The Netskope Intelligent SSE solution keeps a log of all user activities and applies AI/ML algorithms to detect anomalous behavior. In addition to alerting the admins about the anomalous behavior, the solution also maintains a risk score for every user similar to the credit score that each of us has. The risk score is then fed into the zero trust data access policies as a matching criterion. For example, a user with a poor user risk score can be denied access to sensitive data.

                                      A very common way in which threats like malware and ransomware are detected is using vulnerability and exploit signatures. Indicators of compromise like bad file hashes and malicious URLs are also other techniques used to detect threats. These techniques are good at detecting known vulnerabilities but what about the unknown or what is commonly referred to as zero-day threats. This is where AI/ML comes to the rescue. By training AI/ML models with the vast number of known vulnerabilities and exploits, the trained models are able to detect yet to-be-discovered attacks. Netskope has successfully developed AI/ML models to detect threats in executable files (referred to as PE files) as well as common document formats like PDF and Microsoft Office documents.

                                      In the Netskope Next Gen Secure Web Gateway, AI/ML models are used to classify URLs as well as the web content belonging to phishing sites that tend to steal user credentials. AI/ML is also used to categorize websites and help block inappropriate content from being viewed by enterprise users. 

                                      Conclusion

                                      In this blog, we have seen that AI/ML algorithms can help solve a variety of problems that are commonly seen in enterprises. When it comes to SSE solutions, it has to be noted that these AI/ML algorithms have to be optimized to run and return a verdict in real time to be effective. Over time, there are going to be many more challenging use cases that AI/ML can be used to solve effectively.

                                      author image
                                      Krishna Narayanaswamy
                                      A highly regarded and awarded researcher in security, behavioral anomaly detection, and deep packet inspection, Krishna Narayanaswamy brings two decades of technical and thought leadership as founder and chief technology officer at Netskope.
                                      A highly regarded and awarded researcher in security, behavioral anomaly detection, and deep packet inspection, Krishna Narayanaswamy brings two decades of technical and thought leadership as founder and chief technology officer at Netskope.

                                      Stay informed!

                                      Subscribe for the latest from the Netskope Blog